How Will Automation Change Enterprise Data Science? – Part 2
  • プロダクト
    • dotDataとは?
    • AutoML 2.0とは?
    • dotDataが選ばれる理由
    • dotData Cloud
    • dotData Enterprise
    • dotData Py
    • dotData Stream
  • ソリューション
    • 業界別
      • 銀行
      • 保険
      • 製造
      • 小売
      • 製薬
      • 通信
    • 役割別
      • BI & データアナリスト
      • データサイエンティスト
      • 経営層
      • IT&ソフトウェア
    • 価値別
      • 加速
      • 民主化
      • 拡張・強化
      • 業務適用
  • ニュース関連
    • プレスリリース
    • 掲載記事
  • 会社情報
    • 会社情報
    • お問い合わせ
    • 経営陣
  • ブログ
  • USAサイト
  • プロダクト
    • dotDataとは?
    • AutoML 2.0とは?
    • dotDataが選ばれる理由
    • dotData Cloud
    • dotData Enterprise
    • dotData Py
    • dotData Stream
  • ソリューション
    • 業界別
      • 銀行
      • 保険
      • 製造
      • 小売
      • 製薬
      • 通信
    • 役割別
      • BI & データアナリスト
      • データサイエンティスト
      • 経営層
      • IT&ソフトウェア
    • 価値別
      • 加速
      • 民主化
      • 拡張・強化
      • 業務適用
  • ニュース関連
    • プレスリリース
    • 掲載記事
  • 会社情報
    • 会社情報
    • お問い合わせ
    • 経営陣
  • ブログ
  • USAサイト
お問い合わせ

  • Carl Bowen
  • Blog
  • July 18, 2019

How Will Automation Change Enterprise Data Science? – Part 2

continued from last week’s post…

dotData, Data Science Without The Headaches

dotData is a brand new breed of AutoML product that provides what we call Full Cycle Data Science Automation. At the heart of our vision is the idea that the data science process should be fast, easy to perform, and easy to analyze and deploy, from raw business data to the business values. Our vision has led us to develop dotData Enterprise and dotData Py, two related platforms that leverage the same automation engine in uniquely different ways. dotData Enterprise is ideal for the citizen data scientist: fully automated, point-and-click driven, and ready to automate 100% of the data science process without requiring in-depth knowledge of how data science works. dotData Py, on the other hand, is ideal for data scientists. dotData Py provides a python library for Jupyter notebooks, one of the most popular data science platforms available.

dotData Enterprise

dotData Enterprise

 

With dotData Enterprise, citizen-data scientists can work on data science projects without having to learn how to become full-fledged data scientists.

dotDataPy

dotDataPy

 

With dotData Py, data scientists can leverage the benefits of automated feature engineering to dramatically shorten development times, while still retaining the high degree of control and customization that their job requires.

 

Four Pillars to Change Data Science

Accelerate

dotData helps enterprise organizations accelerate their adoption and monetization of Artificial Intelligence (AI) and machine learning (ML) projects. Our full-cycle data science automation accelerates every step of the process, including the data wrangling and feature engineering that often takes months to complete. With dotData, the data science team can execute 10x more projects. Data science is eventually test-and-learn, and the significantly-short turnaround allows you to find critical use cases faster.

Democratize

dotData’s platform is designed to take the hard part of the data science process and automate it. With dotData, a more comprehensive range of people like BI engineers or business analysts can execute and contribute to data science projects, which genuinely democratizes and scale-out data science in the organization. Further, by leveraging “citizen” data scientists for common use cases, data scientists can focus on higher-impact and more challenging tasks.

Augment 

dotData’s AI-powered feature engineering can explore millions of feature hypotheses for a given use case. The automation augments the ability of data scientists and even domain experts to test many more hypotheses than ever before and delivers new business insights through transparent features. 

Operationalize

dotData automatically produces production-ready feature-generating pipeline and ML scoring models and operationalizes them through dotData APIs. The implementation is as simple as adding one line of code, and even more importantly, the maintenance of the entire production workflows, i.e., retraining features and ML models, is also automated. 

AutoML Results That Speak For Themselves

How does the whole process work in real-life environments? dotData has been able to accelerate the AI and machine learning production of global companies like Japan Airlines and SMBC Financial Services and has reduced development efforts from months to days. In fact, in a recent test with a global, fortune 50 consumer electronics company, dotData was able to replicate AI projects that had taken five months each to complete in less than three days. dotData clients see a return on their investment in a matter of days and can finally begin to reduce the high failure rates that have plagued AI and ML shops, and that continues to limit the promise of AI. To learn more about dotData and our products, contact our sales team at contact@dotdata.com, or visit our website at dotdata.com.

The Right Tools For The Right People

A final step in accelerating data science is to create AutoML solutions that provide the right working environment for the right individual. The notion of empowering “citizen data scientists” is not new. The idea that, with automation, non-data scientist trained users like BI analysts can contribute to the AI and machine learning process is not new. The problem, however, is that we must provide the right tools to the right individuals. While fully automated, GUI-driven solutions are ideal for anyone not very familiar with the data science process; data scientists prefer to work within coding environments they love.  For any AutoML solution to provide the right degree of automation for both citizen data scientists as well as for data scientists, the automation tools must be available in forms that can be easily deployed in the development process of each.

 

Read More
  • dotData
  • Media
  • February 14, 2019

dotData Further Accelerates Data Science Automation with the Launch of dotDataPy

According to a recent press release, “dotData, the first and only company focused on delivering end-to-end data science automation and operationalization for the enterprise, today announced the launch of dotDataPy, a lightweight and scalable Python library that enables advanced users to access dotData’s data science automation functionality, including AI-powered feature engineering and automated machine learning. With just a few lines of code, data scientists can now create, execute and validate end-to-end data science pipelines.”
Read the full article “dotData Further Accelerates Data Science Automation with the Launch of dotDataPy” on DATAVERSITY featuring Ryohei Fujimaki, dotData CEO and founder.

Read More

Recent Posts

  • AutoMLの普及は、データサイエンティスト時代の終わりを意味するか?
  • NECとdotData、SaaS型クラウドサービス「dotDataCloud」を日本で販売開始
  • dotData、Amazon SageMakerを利用し、dotData StreamのMLOps機能を強化
  • dotData、Microsoft Azureへのデプロイをサポート、 Microsoft Azure Marketplaceにて提供開始 dotDataがAzure上で利用可能となり、 Azureユーザーのデータサイエンスおよび機械学習プロジェクトを加速
  • 日本経済新聞 – NECとテックファーム、dotData展開におけるリセラー契約を締結

Search

Recent Comments

    Archives

    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • July 2018
    • March 2018

    Categories

    • Blog
    • Events
    • Media
    • Media-JP
    • Press Releases EN
    • Press Releases JP
    • Webinars
    • White Papers

    Meta

    • Log in
    • Entries feed
    • Comments feed
    • WordPress.org
    dotData Logo in white

    Follow us on

    About

    • プロダクト
      • dotDataとは?
      • AutoML 2.0とは?
      • dotDataが選ばれる理由
      • dotData Cloud
      • dotData Enterprise
      • dotData Py
      • dotData Stream
    • ソリューション
      • 業界別
        • 銀行
        • 保険
        • 製造
        • 小売
        • 製薬
        • 通信
      • 役割別
        • BI & データアナリスト
        • データサイエンティスト
        • 経営層
        • IT&ソフトウェア
      • 価値別
        • 加速
        • 民主化
        • 拡張・強化
        • 業務適用
    • ニュース関連
      • プレスリリース
      • 掲載記事
    • 会社情報
      • 会社情報
      • お問い合わせ
      • 経営陣
    • ブログ
    • USAサイト

    News and Events

    • プロダクト
      • dotDataとは?
      • AutoML 2.0とは?
      • dotDataが選ばれる理由
      • dotData Cloud
      • dotData Enterprise
      • dotData Py
      • dotData Stream
    • ソリューション
      • 業界別
        • 銀行
        • 保険
        • 製造
        • 小売
        • 製薬
        • 通信
      • 役割別
        • BI & データアナリスト
        • データサイエンティスト
        • 経営層
        • IT&ソフトウェア
      • 価値別
        • 加速
        • 民主化
        • 拡張・強化
        • 業務適用
    • ニュース関連
      • プレスリリース
      • 掲載記事
    • 会社情報
      • 会社情報
      • お問い合わせ
      • 経営陣
    • ブログ
    • USAサイト

    Resources

    • プロダクト
      • dotDataとは?
      • AutoML 2.0とは?
      • dotDataが選ばれる理由
      • dotData Cloud
      • dotData Enterprise
      • dotData Py
      • dotData Stream
    • ソリューション
      • 業界別
        • 銀行
        • 保険
        • 製造
        • 小売
        • 製薬
        • 通信
      • 役割別
        • BI & データアナリスト
        • データサイエンティスト
        • 経営層
        • IT&ソフトウェア
      • 価値別
        • 加速
        • 民主化
        • 拡張・強化
        • 業務適用
    • ニュース関連
      • プレスリリース
      • 掲載記事
    • 会社情報
      • 会社情報
      • お問い合わせ
      • 経営陣
    • ブログ
    • USAサイト

    • 会社概要
    • お問い合わせ
    • dotDataの経営陣